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the current generation of lan-
guages for the jconstruction of knowledg¢-based systems as
being at too lopw a level of abstraction/ andsemgrmmfer the
ightr level languages for huilding problem solv.
ing systems./ We—intzaduce—eur/hation of generic infor-
mation processing tasks in knowfcdgr-bued problem solv-
ing, and—describe a toolset which can be used to build cx-
t systems in & way that enhances intelligibility and
productivity in knowledge acquisition and system construc-
Waeiliustrate Lthe power of these ideas by payin
“special _ attentlon to 2 high level language called DSPL.
andegdeassibe how it was used in the constriiction of a sys-
tem called MPA, which assists with pltnning in the
domain of offensive counter air missions.

Abstract

This papdr is intended to be an introduction to the
generic tasks approach to analyzing knowledge systems.
descriptions |of some of the particular generic tasks that
have been {dentified, and a description of the software
tools that hive been build as a result. The approach is
illustrated by\ discussing a particular mission-planning sys-
tem, MPA, which was built using the DSPL language (or
tool). The irtent of the paper is primarily tutorial, much
of the materidi is summary or repetition of material al-
elsewhere.!- ¢

Level of Abstiaction Problem in Characterizing
Knowledge-Ba Systems

Much of Al cap be said to be a search for the “Holy
Grail” of a level \of abstraction at which intelligence be-
havior qua inteiligdnt behavior emerges. Above this level.
presumably, are pahicular pieces of knowledge of the task
domain, and below \this level are specific details of how
the intelligent level implemented. For example, in a
rule-based system su as Mycin, everyone would agree
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that rules of medicine are not per se matters of Al
research. That is, the content of the knowledge base itselfl
is made up of domain particulars. At the same time the
language in which the rule system is written, e.g.. Lisp, is
typically thought of as an implementation-level detail, of

no particular interest as Al.

The Al interest of a given expert system is often a mat.
ter of the level at which it is viewed. Clearly, taking
Mycin as an example, all the following points of view are
correct: (i) it suggests therapy for certain kinds of infec-
tious diseases, (ii} it is an embodiment of a diagnostic and
therapeutic strategy, and (iii) it is a decision-maker which
uses backward chaining to navigate a knowledge base of
ules, connecting pieces of evidence to contlusions, in order
o arrive at a reliable conclusion from a given set of data.
oint of view (i) is of limited interest to Al and point of
jew (iii) has been the level at which the system as an Al
this is the level at
hich the claim for generality of the underlying approach
s made. All the excitement surrounding the “knowledge
base/inference engine” paradigm, and the idea that
knowledge acquisition and explanation can be keyed to
phenomena at the rule level, emphasizes that the level cor-
responding (iii) has been the level of abstraction at which
Al interest has been expressed, and claims of progress
have been made.

What of the level corresponding to (ii)? We have for
several years at Ohio State worked on the hypothesis that
this is indeed an important level of abstraction for Al

L /Yﬁ’)wand that knowledge representation, control regimes for

problems solving, knowledge acquisition, and explanation
all can be significantly advanced by looking at phenomena
at this level. B. Chandrasekaran has put forth this view
inl* 3 4 In this paper we give a critical analysis of an
important part of Al, viz.. knowledge-based reasoning, and
propose that a point of view based on a particular level of
abstraction  corresponding to  generic  informsation
processing tasks has a number of advantages hoth for
clarity ol analysis and for system design. This s not
pure theoretical speculation; researchers in our laboratory
have built many systems and tools based on this
framework. We wish lo point to this level of abstraction
as a productive level for concentration, and to indicate the
conceptual advantages of it. Knowledge acquisition, sys-
tem design, control of problem solving and generation of
explanation all are facilitated at the same time, indicating
that there is a naturalness to looking at phenomena at
this level. ’




Intuitively one thinks that there must be some com-
monality of reasoning processes that characterize
“diagnosis’ as a generic activity, even across domains as
different as medicine and mechanical aystems. There
should be control strategies and ways of using knowledge
that are common to diagnostic reasoning as such, or at
least typical of diagnostic reasoning. Similarly there
should be common types of knowledge structures and con-
trol strategies for, say, design as a kind of reasoning ac-
tivity. Further, we expect that the structures and control
regimes for diagnostic reasoning will be generally different
from those for design reasoning. However, when one looks
at the formalisms (or equivalently the languages or shells).
that are commonly used in expert system design, the
knowledge representation and control regimes do not typi-
cally capture these distinctions. For example, in diagnos-
tic reasoning, one might generically wish to speak in terms
of malfunction hierarchies, rule-out strategies, setting up a
differential, etc., while for design, the generic terms might
be device/component hierarchies, design plans, ordering of
design subtasks, etc. [deally one would like to represent
diagnostic knowledge in a domain by using the vocabulary
that is appropriate for the task. But typically the lan-

guages in which the expert systems have been imple-
mented have sought uniformity across tasks, and thus
have lost clarity of representation at the task level. The

computational universality of representation languages such
as Emycin or OPS5 -- ie., the fact that any computer
program can in principle he written in these languages --
often confuses the issue, since after the systemn is finally
built it is often unclear which portions of the system
represent  domain  expertise, and which are programming
devices,  In addition, the control regimes that these lan-
guages come with (such as forward or hackward chaining)
do not explicitly indicate the real control structure of the
systemn at the task level. For example, the fact that RI
5 performs a linear sequence of subtasks -- an atypically
stmple strategy for design probletn solving -- is not ex-
plicitly  encoded: the system  designer  so  to  speak
“encrypted” this control in the pattern-matehing control of
OPSs,

These comments need not be restricted to the rule-based
framework. One could represent knowledge as sentences in
a logical caleulus and use logical inference mechanisms 1o
solve problems: or one could represent it in oa lrame
hierarchy with procedural attachrnents in the slots. (It is
a relatively straightforward thing, e.g, to rewrite MYCIN
® in this manner. see’)  In the former, the control issnes
would deal with choice of predicates and clauses, and in
the latter, they will be at the level of which links to pur-
sue for inheritance, ete. None of these have any oatural
connection with the control issnes speeific to the task.

The other side of the coin. so to speak, regarding con-
trol is the following: because of the relatively fow fevel of
abstraction relative to the information processing  task.
there are control issues that are artifacts of the represen-
tation, but often in our opinion misinterpreted as issues at
the “knowledge-level.” E.g.. rule-based approaches often
concern themselves with conflict resolution strategies.  If
the knowledge were viewed at the level of abstraction ap-
propriate to the task, often there will be organizational
elements which would result in only a small set of highly
relevant pieces of knowledge or rules to being brought up
for consideration, without any conflict resolution strategies
being needed. Of course, these organizational constructs
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could be “programmed” in the rule language, but because
of the status assigned to the rules and their control as
knowledge-level phenomena (as opposed to the implemen-
tation level phenomena, which they often are), knowledge
acquisitivn is often directed towards (typically syntactic)
strategies for conflict resolution, whereas the really opera-
tional expert knowledge is at the organizational level.

This level problem with control structures is mirrored in
the relative poverty of knowledge-level primitives for
representation. For example the epistemology of rule sys-
tems is exhausted by data patterns (antecedents or
subgoals) and partial decisions (consequesnits or goals), that
of logic is similarly exhausted by predicates, functions, in-
ference rules, and related primitives. If one wishes to talk
about types of goals or predicates in such a way that con-
trol behavior can be indexed over this topology, such a
behavior can often be programmed into these systems, but
no explicit rendering of them is possible. FE.g., Clancey
8 found in his work using Mycin to teach students that
for explanation he nceded to attach to each rule in the
Mycin knowledge base encodings of types of goals so that
explanation of its behavior can be couched in terms of
this encoding, rather than only in terms of “Hecause
was a subgoal of .. -." This iy not Lo argue thal rule
representations and backward or forward chaining rontrols
are not “natural” for some situations, If all that a
problem solver has for knowledge in a domain is in the
form of a large collection of unorganized associative pat-
terns, then data-directed or goal-direeted associations may
be the best that the agent can do. But that is precisely
the occasion for weak methods such as hypothesize and
match (of which the above associations are variants), and.
typically, successful solutions cannot be expected in com-
plex problems without combinatorial searches,  Generally.
however, cxpertise can be expected to consists of much
more organized collections of knowledge. with control be-
havior indexed by the kinds of organizations and forms of
knowledge in them.

Thus, there is a need for understanding the generic in-
formation processing tasks that underlie knowledge-based
reasoning. Knowledge ought to he directly encoded at the
appropriate level by using primitives that naturally
describe the domain knowledge for a given generic task.
Problem solving behavior for the task ought to be con.
trolled by regimes that are appropriate for the task. If

done correctly, this would simultaneously facilitate
knowledge representation, problem solving, and explana-
tion.

At this point it will be useful to make further distinc-
tions. Typically many tasks that we intuitively think of
as generic tasks are really complex generic tasks. | e..
they are further decomposable into compounents which are
more elementary in the sense that each of them has a
more homogeneous control regime and knowledge struc-
tures. For example, what one thinks of as the diagnostic
task, while it may be generic in the sense that the task
may be quite similar across domains, it is not a unitary
task structure. Diagnosis  may involve classificatory
reasoning at a certain point, reasoning from one datum to
another datum at another point. and abductive assembly
of muitiple diagnostic hypotheses at another point.
Hierarchical classification has a different form of knowledge
and control behavior from thase for data-to-data reasoning.
which in turn is dissimtlar in these dimensions from
sembling hypotheses.  Our research focuses on tasks at

as-




both these levels, but the latter are viewed as somewhat
“‘atomic’ tasks into which more complex, but still generic,
tasks such as diagnosis and design can often be decom-

posed.

To summarize the view presented so far: There is a need
for understanding the generic information processing tasks
that underlie knowledge-based reasoning. Knowledge ought
to be directly encoded at the appropriate level by using
primitives that naturally describe the domain knowledge
for a given generic task. Problem solving behavior for the
task ought to be controlled by regimes that are ap-
propriate for the task. I done correctly, this would
simultaneously facilitate knowledge representation, problem
solving, and explanation.

Over the years, we have identified, and built systems
using. six such generic tasks. Our work on MDX™ !9,
e.g., identified hierarchical classification.
knowledge-directed information passing. and
hypothesis matching as three generic tasks, and showed
how certain ¢lasses of diagnostic problems can be imple-
mented as an integration of these generic tasks. Nince
then we have identified several others: object synthesis
by plan selection and refinement!!, state
abstraction?, and abductive assembly of
hypotheses!?, There is no claim that these six are ex-
haustive; in fact, our ongoing research objective is to iden-
tify other useful generic tasks and understand their
knowledge representations and strategies for control of
problem solving.

Some Generic Tasks

Characterization of Generic Tasks

Each generic task is characterized by: a task
specification in the form of generic types of input and
output information: specific forms of knowledge needed
for the task, and specific organization of knowledge
particular to the task: a family oi control regimes that
are appropriate for the task.

A task-specific control regime comes with certain charac-
teristic types of strategic goals. These goal types will
play a role in providing explanations of its problem solv-
ing behavior.

When a complex task is decomposed into a set of
generic tasks, it will in general be necessary to provide for
communication between the different structures specializing
in these different types of problem solving. Also there is
not necessarily a unique decomposition. Depending upon
the availability of particular pieces of knowledge, different
architectures of generic tasks will typically be possible for
a given complex task.

We will now give brief characterizations of the generic
tasks that we have identified.

Taxonomic (lassification

Task specification: Classify a (possibly complex) descrip-
tion of a situation as an element, as specific as possible.
in a classification hierarchy. FLE.g. classify a medical case
description as an element of a disease hierarchy.

61

Forms of knowledge: one main form is <partial situa-
tion description> ---2» evidence, belief about confirmation
or disconfirmation of classificatory hypotheses. E.g., in
medicine, a piece of classificatory knowledge may be: cer-
tain pattern in X-ray & bilirubin in blood —> high
evidence for cholestasis.

Organization of knowledge: knowledge of the form above
distributed among concepts in a classificatory concept
hierarchy. Each conceptual “‘specialist” ideally contains
knowledge that helps it determine whether it (the concept
it stands for) can be established or rejected.

Control Regime: Problem solving is top down, each con-
cept when called upon tries to establish itself. If it suc-
ceeds, it lists the reasons for its success, and calls its suc-
cessors, which repeat the process. If a specialist fails in
its attempt to establish itself, it rejects itself, and all its
successors are also automatically rejected. This control
strategy can be called Esteblish-Refine, and results in a
specific classification of the case. (The account is a
simplified one. The reader is referred to!® for details and
elaborations.)

Establish - <concept>, Refine

Goal types: E.g.
(subclassify) <concept>

Example Use: Medical diagnosis can often be viewed as
a classification problem. In planning, it is often useful to
classify a situation as of a certain type, which then might
suggest an appropriate plan.

Object Synthesis by Plan Selection and Refinement

Task Specification: Design an object satisfying specifica-
tions (object in an abstract sense: they can be plans,
programs, etc.).

Forms of knowledge: Object struc‘ure is known at some
level of abstraction, and pre-compiled plans are available
which can make choices of components, and have lists of
concepts to call upon for refining the design at that level
of abstraction.

Organization of Knowledge: Concepts corresponding to
componeuts organized in a hierarchy mirroring the object
structure. Fach concept has plans which can be used to
make commitments for vanous ‘‘dimensions” of the com-
ponent.

Control Regime: Top down in general. The following is
done recursively until a complete design is worked out: A
specialist corresponding to a component of the object is
called, the specialist chooses a plan based on the specifica-
tions and problem state, instantiates and executes the plan
which -suggests further specialists to call to set details of
the subcomponents. Pilan failures are passed up until ap-
propriate changes are made by higher level specialists.

Goal Types: E.g., Choose plan, execute plan element -
refine <plan>, redesign (modify) - partial design - to
respond to failure of <subplan.-. select alternative plan.
etc.

Example: Expert design tasks, routine synthesis of plans

of action.

We will characterize the other generic tasks more suc-
cinctly. The reader is referred to! for more details.




Knowledge-Directed Information Passing

Task: It is desired to obtain attributes of some datum.
by deriving from some conceptually related datum. Some
forms of knowledge are: <attribute> of <datum> is in-
herited from <attribute>yyof parent of <datum>,
<attribute> of <datum> is related as <relation> to
<attribute> of <concept>. Organization: concepts are or-
ganized as a frame hierarchy, with IS-A and PART-OF
links. Each frame is a specialist in knowledge-directed
data inference for the concept. This is basically a hierar-
chical information-passing control regime.

Example uses: knowledge-based data retrieval tasks in
wide variety of situations, as an intelligent data base in
support of problem solvers of other types.

Abductive Assembly of Explanatory Hypotheses

Task Specification: Given a situation (described by a set
of data items) to be explained by the best explanatory ac-
count, an- .iven a number of hy, theses, each associated
with a degree of belief, and cach of which offers to ex-
plain a portion of the data (possibly overlapping with data
to be accounted for by other hypotheses), construct the
best composite explanatory hypothesis. Some forms of
knowledge are: causal or other relations (e.g. special case
of, incompatibility, suggestiveness) between the hypotheses,
relative significance of data items, and ways to group data
items to be explained. Organization: one main, or a
hierarchical community of active abducers, each specializ-
ing in explaining a certain portion of the data by compos-
ing and criticizing hypotheses.  Control Regime: (See
13 for a fuller discussion.) A specialized means-ends
regime is in control, driven by the goals of explaining all
the significant findings, with an economical hypothesis.
which is consistent, and has been criticized for certain
strengths and weaknesses. Some goal types are: account-
for <datum:>: check-superfluousness-of < hypothesis>.
choose the most significant unexplained finding. The In-
ternist system!! and the Dendral system!® perform abduc-
tive assembly as part of their problem solving.

State Abstraction

Task Specification: Given a change in some state of a
system, provide an account of the changes that can be ex-
pected in the functioning of the system. {Useful for
reasoning about consequences of changes on complex
systems.) One knowledge form is - change in state of
subsystem> --- . change in functionality of subsystem =
change in state of the immediately larger system -. The
knowledge is organized into conceptual specialists cor-
responding to systems and subsystems conpnected in a way
mirroring the way the systems and subsystems are put
together. The control is basically bottom up. following
the architecture of the system;subsystem relationship.
The changes in states are followed through, interpreted as
changes in functionalities of subsystems, until the changes
in the functionalities at the level of abstraction desired are
obtained. This form of reasoning is useful for answering
questions like: "What system functionalities will be com-
promised if this valve fails closed?".

Hypothesis Matching

Given a concept and a set of data that describe the
problem state, decide if the concept matches the situation.
The idea here is to encode the routine knowledge for
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verification and refutation that the concept applies to the
situation. One way this can be done is by using a hierar-
chical representation of evidence abstractions, where the
top node determines the overall degree of matching of the
hypothesis to the data, and lower-level nodes represent
components or features of evidence for the evidence
abstraction at higher levels. Form of knowledge are such
as to enable evaluation of strength for each evidence
abstraction, and to support mapping degrees of belief ir
each of these evidence absatractions, to degree of belief in
the higher abstractions. Strength for an evidence abstrac-
tion can be determined Each evidence abstraction can be
determined by matching against prototypical patterns
which have evidential significance.  Samuel's signature
tables can be thought of as performing this task.

How Existing Expert Systems can be Analyzed in
This Framework

Separating the implementation language and the intrinsic
nature of the tasks has been argued as being salutary for
a number of reasons. Let us look at some of the better
known expert systems from the perspective of the
framework developed so fu: in this paper.

MYCIN’s task is to (i) elassify a number of observations
describing a patient's infection as due to one or another
organism, and (ii) once that is done, to instantiate a plan
with parameters appropriate for the particular patient
situation. We have shown in!® how the diagnostic portion
of MYCIN can be recast as a classification problem solver,
with a more direct encoding of domain knowledge and a
control structure that is directly appropriate to this form
of problem solving,.

Prospector!”? classifies a geological description as ore of a
pre-enumerated set of formations. Internist!! generates
candidate hvpotheses by a form of enumeration
(plausibility scoring and keeping only the top few) and
uses a form of abductive assembly to build a composite
hypothesis that accounts for all of the data. Assembly
and hypothesis enumeration alternate. Dendrai!® generates
candidate hypotheses by a form of Aypothesis matching and
uses a form of abductive assembly which puts together the
best molecular hypothesis from the fragments produced by
the matching process.

Note that in these analyses we have not mentioned rules
{Mycin), networks (Prospector), graphs (Dendral)., etc,

- which are the means of encoding and carrying out the

tasks. This separation is an essential aspect of what we
mean by the “right” level of abstraction in analysis.

Encoding Knowledge at the Level of the Task:
The Generic Task Toolset

For each ge.eric task, the form and organization of the
knowledge directly suggests the appropriate representation
in terms of which domain knowledge for that task can be
encoded. Since there is a control regime associated with
each task, the problem solver can be implicit in ke
representation language. That is, a shell for each generic
task can be constructed such that, as soon as knowledge
is represented in the shell, a problem solver which uses
the control regime on the knowledge can be created by
the interpreter.  This is similar tn what representation
systems such as EMYCIN do, but note that we are




deliberately trading generality at a lower level to gain
specificity, clarity, and richness of ontology and control at
a higher level.

We have designed and implemented representation lan-
guages for versions of each of the six generic tasks we
described. Here is a list of the generic task tools, each
with a briel description of the task for which it is
designed.

¢ HYPER for matching concept to situation to
determine confidence or appropriateness.

o CSRL for taxonomic classification, typically a
major component of diagnostic reasoning.!®

o DSPL for object synthesis by plan selection
and refinement, captures knowledge for certain
routine design and planning tasks.!?

information

o IDABLE for knowledge-directed
passing for intelligent data retrieval.

e PEIRCE for assembly and criticism of com-
posite explanatory hypotheses, a form of .
abduction or best-explanation reasoning.?0

e WWHI (What Would Happen If) for predic-
tion by abstracting state changes.

We have described how this approach directly helps in
providing intelligible explanations of problem soiving in ex-
pert systems.?! The approach has a number of other im-
plications. E.g.. uncertainty handling in problem solving is
usefully viewed as consisting of different types for each
kind of problem solving. rather than as a uniform general
method.?

In principle the tools can be used together to build com-
posite problem soivers that integrate the different types of
reasoning associated with the generic tasks. Systems have
been built integrating more than one type of reasoning
(the Red?? system for example relies on four of the types)
but these systems predate the availability of the tools. At
present the actual toolset consists of separately imple-
mented tools in a variety of languages: each tool having
an incarnation in Interlisp. LAIR has under development
an integrated version of the tooiset in Common Lisp.

The computational architecture of a problem-solving sys-
tem (or system component} built with any of the tools is
based on functionally distinct, highly modular elements.
tightly organized. A generic task problem solver is a
community of agents, where each agent is of a specific
type, each has its own embedded knowledge. The agents
are organized so that they have specific lines of com-
munication with each other; and, depending on the generic
task. they pass control around in 2 well-defined wav in or-
der to vooperate and solve the problem. A HYPER-built
system is made up of knowledge groups. hierarchically or-
ganized: a CSRI-built consists of a  hierarchical
community of classification sperialist, each specializing in a
single classificatory concept.  This sort of system architee-
ture, besides making implementation in an object-oriented
programming framework fairly easy. makes for systems
that are distributable and have predictable concurrencies.
The high degree of modularity--modules having clear func-
tions. and clear interactions with other modules--makes for
good software engineering at the knowledge level.
“structured programming of knowledge bases™ if vou will.

system
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DSPL for building a Mission Planning Assistant

We will describe the use of DSPL (Design Specialists
and Plans Language) for the design and implementation of
an expert system in the domain of tactical air mission
planning. After investigating KNOBS system from
MITRE Corporation, an existing mission planning system.
we developed the Mission Planning Assistant (MPA) using
DSPL and our generic task approach to building expert
systems. KNOBS was the primary source of domain
bnowledge for the MPA system. Our project had two
main goals. First, we wanted to explore the use of DSPL
for routine planning tasks. Initially, DSPL was developed
as a result of studying a routine mechanical design task.'!
It seemed to us, however, that routine planning shares
many of the characteristics of routine design, suggesting
that they might require some of the same kinds of
problem-solving activities. Secondly, we wanted to inves-
tigate the explanation facilities that are necessary in plan-
ning systems. We wanted to demonstrate that our generic
task architectures provide very natural and comprehensive
frameworks for explanation.

Tactical mission planning in the Air Force essentially in-
volves the assignment of resources Lo various tasks. The
resources are primarily aircraft and their stores located at
airbases across the theater of operations. The tasks are
specified by an "apportionment” order issued by the Joint
Task Force Commander to a Tactical Air Control Center
(TACC). This order describes the overall military objee-
tives as determined by the Task Foree Commander. The
TACC is responsible for assigning aircraflt and personacl
from specific military units to meet the objectives of the
apportionment order. The result of these assignments is
an "Air Tasking Order™ (ATO) which summarizes the
responsibilities of each unit with respect to the day’s mix-
sions.  Fach mission planned requires attention 1o such
details as the selection of aircraft type appropriate to the
mission, selection of a base from which to fly the rission.
and coordination with other missions.

The MPA system we developed currently addresses onl
a single type of mission, the Offensive Counter-Air (OCA)
mission. An OCA mission is an air strike directed specifi-
cally against an enemy's airbase. Our selection of the
OCA mission arose primarily because of the availability of
the KNOBS system and its knowledge base of relevant
domain facts. Our approach to tactical mission planning
treats the Air Tasking Order (ATO) as an abstract device
to be designed. The planning of the missions of the com-
pleted ATO involves a process similar to the process a
designer undergoes when faced with a complex mechanical
device to design. A view of design problem solving should
illuminate this idea. For a more comprehensive descrip-

tion of design seell,

Routine Design and DSPL

The general domain of design is vast; it involves
creativity, many different problem-solving techniques, and
many kinds of knowledge. Goals are often poorly
specified, and may change during the course of problem
solving. A spectrum of classes of design problems can be
discerned, varying in complexity from those problems re-
quiring significant amounts of ‘‘creativity”, to the most
routine design problems requiring no  creativity at  all.

The complexity of a design problem will depend on what



pieces of knowledge are available to the problem solver
prior to the start of design, that is, the right pieces of
knowledge can remove the need for creativity and turn a
complex design task into a routine one.

What we have called “Class 3 Design” characterizes a
form of routine design activity which postulates that
several distinct types of knowledge are available prior to
problem solving. First we assume that complete
knowledge of the component breakdown of the to-be-
designed device is available to the problem solver, includ-
ing knowledge of what component attributes need to be
specified in order to specify a design. The final design
will consist only of components known in advarce, and no
novel components need to be synthesized. Secondly, we
assume that knowledge is available in the form of plan
fragment< describing the actions required to design each
component. A plan for designing a component will typi-
cally include the designing of subcomponents as steps in
the plan. Thirdly, we assume that recognition knowiedge
is available that will allow the problem solver to select be-
tween the alternative plans for designing a component.
depending on the design requirements and the state of the
problem solving.  The problem solving proceeds by follow-
ing a top-down process of plan selection and refinement.
with localized back up and selection of alternative plans
upon failure of a design plan at any devel.  While the
choices at ecach point mav be simple, the design process
overall may bhe quite complex. and objects of significant
complexity can be designed. It appears that a significant
portion of the everyday activity of practicing designers can
be analyzed ax class 3 design.

In DSPL. a design problem solver consists of a hierarchy
of cooperating. conceptual specialists, with each specialist
responsible  for  a  particular  portion  of the design.
specialists higher up in the hierarchy deal with the more
general  aspects  of  the device  being  designed, while
specialists  lower in  the hierarchy design  specific  sub-
portions of the device, or address other design subtasks.
Any specialist may access a design data-base (mediated by
an intelligent data-base assistant).  The organization of
the specialists and the specific content of each one is in-
tended to precisely capture the human designer’s expertise
in the problem domain.  Each specialist in the design
hierarchy contains locally the design knowledge necessary
to accomplish that portion of the design for which it is
responsible. There are several types of knowledge
represented in each specialist, three of which are described
here. First. explicit design plans in each specialist encode
sequences of possible actions to successfully complete the
specialist’s task. Different design plans within a specialist
may encode alternative action sequences, but all of the
plans within a particular specialist are always aimed at
achieving the specific design goals of that specialist. A
second type of knowledge encoded within <pecialists is en-
coded in design plan sponsors.  Fach design plan has an
associated sponsor to determine the appropriateness of the
plan in the run-time context. The third type of planning
knowledge in a specialist is encoded in design plan selec-
tors. The function of the selector knowledge is to ex-
amine the run-time judgments of the design plan sponsors
and determine which of the design plans within the
specialist is most appropriate to the current problem con-
text,

Control in a DSPL system proceeds downwards from the
top-mast  specialist in the design hicrarchy. Heginning
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with the top-most specialist, each specialist selects a
design plan appropriste to the requirements of the
problem and the current state of the solution. The
selected plan is executed by performing the design actions
specified by the plan. This may include computing and
assigning specific values to attributes of the device, check-
ing constraints to test the progress of the design, of in-
voking sub-specialists to accomplish sub-portions of the
design.  Thus a design plan which refers to a sub-
specialist is refined by passing control to that sub-
specialist in its turn, DSPL also includes [acilities for the
handling of various types of plan failures, and for coatroll-
ing redesign suggested by such failures.?

Mission Planning as Routine Design

We view tactical mission planning as predominantly a
routine design task. The problem can be decomposed into
the design of subcomponents of the mission plan, where
each component can be designed in a fairly independent
fashion. The Air Tasking NDrder is decomposed into
various missions or groups of missions of known types.
Each mission or group of missions can he planned rela-
tively independently of the others, modulo resource conten-
tion considerations. In both the mission planning and the
mechanical design domains, each of the solutions to the
subproblems must be appropriately combined into the
solution for the problem which they decompose. Due to
the well known limitations of human problem solving
capacities, it is apparent that a human problem solver can
be successful in such a situation only to the extent that
she can decompose the probiem into a manageable number
of somewhat independent sub-problems, which can be
solved separately and combined into a final solution. The
MPA system uses DSPL as a natural mechanism for
representing the necessary knowledge.

The MPA System

The MPA system contains six specialists.  The topmost
specialist, OCA, accepts the mission requirements and ul-
timately produces the [inal mission plan. The 0OCA
specialist divides its work between two subspecialists, base
and aircraft. The base specialist is responsible for select-
ing an appropriate base, while the aircraft specialist selects
an aircraft type.  The aircraft specialist has three sub-
specialists, one for each of three aircraft types known to
the MPA system. As needed, one of these specialists will
select  an appeopriate configuration for its aircralt type.

Problem solving begins when the OCA specialist is re-
quested to plan a mission. Currently, the OCA specialist
contains only a single design plan which first requests the
base specialist to determine a base, and then requests the
aircraft  specialist to  determine (and configure) an ap-

propriate aircraflt for the mission.  The current base
specialist simply selects a base from a list of candidate
bases  geographically near the target. The aireraft

specialist uses considerations of threat types and weather
conditions at the target to select an appropriate aireralt
type and number for the mission. The aircraflt specialist
and its three configuration subspecialists represent the
most elaborated domain knowledge in the MPA system.

Suppose the mission requirements call for a night raid.
The plan sponsors for both the A-10 and F-1 would rule
out the possibility of using these aircraft. since (in our



domain model} neither of these aircraft have night flying
capability. The F-111 plan spoasor, since it is an all-
weather fiziter with night capabilities, would not be ex-
cluded. The plan sponsor for the F-111, based on this
and other considerations (range, ability to carry ap-
propriate ordinance, target characteristics, ete.) would find
the F-111 suitable for the mission. The plan selector in
the aircraft specialist, finding that two design plans have
ruled out, would select the “suitable’” F-1{1 design plan.
and return this information to the specialist, The
specialist executes the F-111 design plan, which includes
setting the aircraft type in the mission template to
“F.111", and invoking the F-111 configuration specialist
which in turn decides an acceptable ordinance load for the
F-111 for this mission. Once the configuration of the
aircraft is known. the single aircralt probability of destruc-
tion in the mission context can be computed. Finally.
knowing the mission capabilities of each aircraft, the re-
quired number of aircraft can be determined in order to
achieve the required probability of destruction, and the
necessary number of aircraft can be reserved [from the
proper unit.

Summary

We have argued the need for high-level task-specific tools
for constructing knowledge-based problem-solving systeins.
We described our approach, based on the notion of generic
information processing tasks, and described a toolset which
can he used to efficiently build expert systems,  Expert
systems  built  according to this methodology have all of
the advantages of control strategies  and  knowledge
representations that are especially saited to their infor-
mation processing  tasks, Advantages include knowing
what kinds of knowledge to collect, and where to put it
away for use in the problem solver, efficient processing at
run time, and explanations of system behavior in terms of
strategies and problem solving goals keyed to the type of
reasoning.  We have illustrated the power of these ideas
by paying special attention to o high level language called
DSPL, and have shown how 1t was used in the construc-
tion of a system called MPAL for assisting with mission
planning in the domain of offensive counter air missions.
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